K'uyukuq ankucha llika

ukhu kapchisqa ankucha llika

Ukhu yachaypiqa, (inlish siminta convolucional neural network (CNN icha ConvNet): 'tukuyimayuqta k'uyuy anku llika') kayqa huk kapchisqa ankucha llika sinri (ANN), astawanta llamk'achisqa rikuy siq'ikunata t'aqwinapaq.[1] CNNkuna riqsisqataq kanku Shift Invariant utaq Space Invariant Artificial Neural Networks (SIANN), k'uyuna k'itikuna utaq suysuna icha sut'uchinakuna rakisqa-llasay arkhitiktura kaqpi sayasqa, chaymanta yaykuy ruwanakunawan llimp'iq chaymanta tikray-kikin wist'u kutichiykunata qun ruwanakuna mapakuna hina riqsisqa.[2][3] Astawan k'uyuy ankucha llikakuna mana mama wist'uchu kanku tikraypaq, chay downsampling ruwarinanrayku chaymanta chay yaykusqaman churanku.[4] Paykunaqa ruwanakunayuq kanku siq'i, widiyu riqsiypi, yuyaychaq sistimakunapi,[5] siq'i t'aqaypi, siq'i siqmintaypi, hampi siq'i t'aqwiypi, saqlla pacha simi ruwaypi,[6] ñuqtu–antañiqiq chawpi-phasikuna kaqpi,[7] chaymanta qullqi pacha siriyikunapi.[8]

CNN = K'uyukuq ankucha llika (KAL)

Pukyukuna

llamk'apuy
  1. Valueva, M.V.; Nagornov, N.N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. (2020). "Application of the residue number system to reduce hardware costs of the convolutional neural network implementation". Mathematics and Computers in Simulation (Elsevier BV) 177: 232–243. Error: Bad DOI specified. ISSN 0378-4754. "Convolutional neural networks are a promising tool for solving the problem of pattern recognition.". 
  2. Zhang, Wei. "Shift-invariant pattern recognition neural network and its optical architecture". Proceedings of Annual Conference of the Japan Society of Applied Physics. 
  3. Zhang, Wei. "Parallel distributed processing model with local space-invariant interconnections and its optical architecture". Applied Optics 29: 4790–7. Error: Bad DOI specified. 
  4. Mouton, Coenraad; Myburgh, Johannes C.; Davel, Marelie H.. "Stride and Translation Invariance in CNNs". Artificial Intelligence Research (Springer International Publishing) 1342: 267–281. Error: Bad DOI specified. 
  5. van den Oord, Aaron; Dieleman, Sander; Schrauwen, Benjamin (2013-01-01). Burges, C. J. C.. ed. Deep content-based music recommendation. Curran Associates, Inc.. pp. 2643–2651. https://proceedings.neurips.cc/paper/2013/file/b3ba8f1bee1238a2f37603d90b58898d-Paper.pdf. 
  6. Collobert, Ronan; Weston, Jason (2008-01-01). A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. ICML '08. New York, NY, USA: ACM. 160–167. doi:10.1145/1390156.1390177. ISBN 978-1-60558-205-4. 
  7. Avilov, Oleksii; Rimbert, Sebastien; Popov, Anton; Bougrain, Laurent. "Deep Learning Techniques to Improve Intraoperative Awareness Detection from Electroencephalographic Signals". 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (IEEE) 2020: 142–145. Error: Bad DOI specified. 
  8. Tsantekidis, Avraam; Passalis, Nikolaos; Tefas, Anastasios; Kanniainen, Juho; Gabbouj, Moncef. "Forecasting Stock Prices from the Limit Order Book Using Convolutional Neural Networks". 2017 IEEE 19th Conference on Business Informatics (CBI) (IEEE): 7–12. Error: Bad DOI specified. 
"https://qu.wikipedia.org/w/index.php?title=K%27uyukuq_ankucha_llika&oldid=655459" p'anqamanta chaskisqa (Wikipedia, Qhichwa / Quechua)